Gas Exchange
Respiratory Systems

Optimizing gas exchange
- Why high surface area?
 - maximizing rate of gas exchange
 - CO₂ & O₂ move across cell membrane by diffusion
 - rate of diffusion proportional to surface area
- Why moist membranes?
 - moisture maintains cell membrane structure
 - gases diffuse only dissolved in water

Gas exchange in many forms...
- one-celled
- amphibians
- echinoderms

Evolution of gas exchange structures
- Aquatic organisms: external systems with lots of surface area exposed to aquatic environment
- Terrestrial: moist internal respiratory tissues with lots of surface area

Gas Exchange in Water: Gills
Gas Exchange on Land

- **Advantages of terrestrial life**
 - Air has many advantages over water
 - Higher concentration of O₂
 - O₂ & CO₂ diffuse much faster through air
 - Respiratory surfaces exposed to air do not have to be ventilated as thoroughly as gills
 - Air is much lighter than water & therefore much easier to pump
 - Expend less energy moving air in & out

- **Disadvantages**
 - Keeping large respiratory surface moist causes high water loss
 - Reduce water loss by keeping lungs internal

Terrestrial adaptations

- **Tracheae**
 - Air tubes branching throughout body
 - Gas exchanged by diffusion across moist cells lining terminal ends, not through open circulatory system

Lungs

- Exchange tissue: spongy texture, honeycombed with moist epithelium

The Lungs

- Bronchi, Bronchial Tree, and Lungs

Alveoli

- Gas exchange across thin epithelium of millions of alveoli
 - Total surface area in humans ~100 m²
Negative pressure breathing

- Breathing due to changing pressures in lungs
 - air flows from higher pressure to lower pressure
 - pulling air instead of pushing it

Mechanics of breathing

- Air enters nostrils
 - filtered by hairs, warmed & humidified
 - sampled for odors
- Pharynx → glottis → larynx (vocal cords)
 → trachea (windpipe) → bronchi → bronchioles → air sacs (alveoli)
- Epithelial lining covered by cilia & thin film of mucus
 - mucus traps dust, pollen, particulates
 - beating cilia move mucus upward to pharynx, where it is swallowed

Autonomic breathing control

- **Medulla** sets rhythm & **pons** moderates it
 - coordinate respiratory, cardiovascular systems & metabolic demands
- Nerve sensors in walls of aorta & carotid arteries in neck detect O₂ & CO₂ in blood

Medulla monitors blood

- Monitors CO₂ level of blood
 - measures pH of blood & cerebrospinal fluid bathing brain
 - CO₂ + H₂O → H₂CO₃ (carbonic acid)
 - if pH decreases then increase depth & rate of breathing & excess CO₂ is eliminated in exhaled air

Breathing and Homeostasis

- **Homeostasis**
 - keeping the internal environment of the body balanced
 - need to balance O₂ in and CO₂ out
 - need to balance energy (ATP) production
- **Exercise**
 - breathe faster
 - need more ATP
 - bring in more O₂ & remove more CO₂
- **Disease**
 - poor lung or heart function = breathe faster
 - need to work harder to bring in O₂ & remove CO₂

Diffusion of gases

- Concentration gradient & pressure drives movement of gases into & out of blood at both lungs & body tissue

![Diagram of diffusion of gases](image-url)
Hemoglobin

- Why use a carrier molecule?
 - O₂ not soluble enough in H₂O for animal needs
 - blood alone could not provide enough O₂ to animal cells
 - hemocyanin in insects = copper (bluish/greenish)
 - hemoglobin in vertebrates = iron (reddish)
- Reversibly binds O₂
 - loading O₂ at lungs or gills & unloading at cells

Cooperativity in Hemoglobin

- Binding O₂
 - binding of O₂ to 1st subunit causes shape change to other subunits
 - conformational change
 - increasing attraction to O₂

- Releasing O₂
 - when 1st subunit releases O₂, causes shape change to other subunits
 - conformational change
 - lowers attraction to O₂

Transporting CO₂ in blood

- Dissolved in blood plasma as bicarbonate ion

Releasing CO₂ from blood at lungs

- Lower CO₂ pressure at lungs allows CO₂ to diffuse out of blood into lungs

Measuring Lung Volumes

- Air is constantly exchanging at a rate of roughly 0.35dm³/breath
- Breath that is not completely exhaled is the residual volume
- Total volume that comes in one breath is tidal volume
- Ventilation rate is tidal volume times breathing rate (total volume of air exchanged in a minute)