Why an immune system?
- **Attack from outside**
 - lots of organisms want you for lunch!
 - animals are a tasty nutrient- & vitamin-packed meal
 - cells are packages of macromolecules
 - no cell wall
 - traded mobility for susceptibility
 - animals must defend themselves against invaders
 - viruses
 - HIV, flu, cold, measles, chicken pox, SARS
 - bacteria
 - pneumonia, meningitis, tuberculosis
 - fungi
 - yeast (“Athlete’s foot…”)
 - protists
 - amoeba, Lyme disease, malaria
- **Attack from inside**
 - defend against abnormal body cells = cancers

Lymph system
- **Production & transport of leukocytes**
- **Traps foreign invaders**
- **Development of Red & White blood cells**
 - **Lymphoid stem cells**
 - **Pluripotent stem cells (in bone marrow)**
 - **Myeloid stem cells**
 - **Erythrocytes**
 - **Monocytes**
 - **Neutrophils**
 - **B cells**
 - **T cells**
 - **Thrombocytes**
 - **Inflammatory response**
 - **Infected body**
- **Lines of defense**
 - **1st line: Barriers**
 - broad, **external** defense
 - skin & mucus membranes
 - **2nd line: Non-specific patrol**
 - broad, **internal** defense
 - “patrolling soldiers”
 - leukocytes = phagocytic WBC
 - macrophages
 - **3rd line: Immune system**
 - specific, **acquired immunity**
 - “elite trained units”
 - lymphocytes & antibodies
 - B cells & T cells
1st line: External defense
- Physical & chemical defenses
 - non-specific defense
- External barrier
 - epithelial cells & mucus membranes
 - skin
 - respiratory system
 - digestive system
 - uro-genital tract

Lining of trachea: ciliated cells & mucus secreting cells

1st line: Chemical barriers on epithelium
- Skin & mucous membrane secretions
 - sweat
 - pH 3-5
 - tears
 - washing action
 - mucus
 - traps microbes
 - saliva
 - anti-bacterial = "lick your wounds"
 - stomach acid
 - pH 2
 - anti-microbial proteins
 - lysozyme enzyme
 - digests bacterial cell walls

2nd line: Internal, broad range patrol
- Innate, general defense
 - rapid response
- Patrolling cells & proteins
 - attack invaders that penetrate body’s outer barriers
 - leukocytes
 - phagocytic white blood cells
 - complement system
 - anti-microbial proteins
 - inflammatory response

Leukocytes: Phagocytic WBCs
- Attracted by chemical signals released by damaged cells
 - enter infected tissue, engulf & ingest microbes
 - **Lysosomes** digest pathogens once engulfed
- **Neutrophils**
 - most abundant WBC (~70%)
 - ~ 3 day lifespan
- **Macrophages**
 - “big eater”, long-lived
- **Natural Killer Cells**
 - destroy virus-infected cells & cancer cells

Phagocytes
- Macrophage
- Yeast

Destroying cells gone bad!
- Natural Killer Cells perforate cells
 - release **perforin** protein
 - insert into membrane of target cell
 - forms pore allowing fluid to flow into cell
 - cell ruptures (lysis)
 - **apoptosis**
Anti-microbial proteins

- Complement system
 - ~20 proteins circulating in blood plasma
 - attack bacterial & fungal cells
 - form a membrane attack complex
 - perforate target cell
 - apoptosis
 - cell lysis
 - complement proteins form cellular lesion
 - extracellular fluid
 - plasma membrane of invading microbe
 - bacterial cell

Inflammatory response

- Damage to tissue triggers local non-specific inflammatory response
 - release histamines & prostaglandins
 - capillaries dilate, more permeable (leaky)
 - increase blood supply
 - delivers WBC, RBC, platelets, clotting factors
 - fight pathogens
 - clot formation
 - accounts for swelling, redness & heat of inflammation & infection

Inflammatory response

- Reaction to tissue damage
 - Pin or splinter
 - Bacteria
 - Chemical alarm signals
 - Blood vessel
 - Blood clot
 - Swelling
 - Phagocytes

Fever

- When a local response is not enough
 - systemic response to infection
 - activated macrophages release interleukin-1
 - triggers hypothalamus in brain to readjust body thermostat to raise body temperature
 - higher temperature helps defense
 - inhibits bacterial growth
 - stimulates phagocytosis
 - speeds up repair of tissues
 - causes liver & spleen to store iron, reducing blood iron levels
 - bacteria need large amounts of iron to grow

3rd line: Acquired (active) Immunity

- Specific defense
 - lymphocytes
 - B lymphocytes (B cells)
 - T lymphocytes (T cells)
 - antibodies
 - immunoglobulins
- Responds to...
 - antigens
 - Surface glycoproteins
 - specific pathogens
 - specific toxins
 - abnormal body cells (cancer)

How are invaders recognized: antigens

- Antigens
 - proteins that serve as cellular name tags
 - foreign antigens cause response from WBCs
 - viruses, bacteria, protozoa, parasitic worms, fungi, toxins
 - non-pathogens: pollen & transplanted tissue
 - B cells & T cells respond to different antigens
 - an “immune response”
 - B cells recognize intact antigens
 - pathogens in blood & lymph
 - T cells recognize antigen fragments
 - pathogens which have already infected cells
 - “self”
 - “foreign”
Lymphocytes

- **B cells**
 - mature in bone marrow
 - **humoral** response system
 - “humors” = body fluids, concentrated in lymph nodes and spleen after maturing
 - produce antibodies

- **T cells**
 - mature in thymus
 - **cellular** response system
 - Learn to distinguish “self” from “non-self” antigens during maturation
 - if they react to “self” antigens, they are destroyed during maturation

Antibodies

- Proteins that bind to a specific antigen
 - multi-chain proteins produced by B cells
 - binding region matches molecular shape of antigen
 - each antibody is unique & specific
 - millions of antibodies respond to millions of foreign antigens
 - tagging “handcuffs” — “this is foreign…gotcha!”

Structure of antibodies

- Each B cell has ~100,000 antigen receptors

How antibodies work

- Binding of antibodies to antigens inactivates antigens by:
 - Neutrophils
 - Phagocytosis
 - Complement

Classes of antibodies

- **Immunoglobulins**
 - IgM
 - 1st immune response
 - activate complement proteins
 - IgG
 - 2nd response, major antibody circulating in plasma
 - promote phagocytosis by macrophages
 - Most common, can pass placental barrier
 - IgA
 - in external secretions, sweat & mother’s milk
 - IgE
 - promote release of histamine & lots of bodily fluids
 - evolved as reaction to parasites
 - triggers allergic reaction
 - IgD
 - receptors of B cells?? Function unclear—found in blood
B cell immune response

- Tested by B cells (in blood & lymph) + antibodies
- Memory cells reserve response
- Captured invaders
- Plasma cells release antibodies in clones

1° vs 2° response to disease

- Memory B cells allow a rapid, amplified response with future exposure to pathogen

How do vertebrates produce millions of antibody proteins, if they only have a few hundred genes coding for those proteins?

By DNA rearrangement & somatic mutation, vertebrates can produce millions of B & T cells

Immune system exposed to harmless or weakened version of pathogen
- Triggers artificial active immunity
- Stimulates immune system to produce antibodies to invader
- Rapid response if future exposure

Most successful against viral diseases

The Polio Vaccine

- Developed first mass-administered vaccine in USA
- Against polio
- Attacks motor neurons

1914 – 1995

- April 12, 1955

Jonas Salk

The Polio Vaccine

- 1962

oral vaccine

Hilary Koprowski

1950–1954

vaccine

Albert Sabin

1994

oral vaccine

Polio epidemics

- 1979: last domestic outbreak
- 1994: America is polio free
Passive immunity
- Obtaining antibodies from another individual
- Maternal immunity
 - Antibodies pass from mother to baby across placenta or in mother’s milk
 - Critical role of breastfeeding in infant health
 - Mother is creating antibodies against pathogens
 - Baby is being exposed to
- Injection
 - Injection of antibodies
 - Short-term immunity

What if the attacker gets past the B cells in the blood & actually infects some of your cells?
You need trained assassins to kill off these infected cells!

T cells
- Cell-mediated response
 - Immune response to infected cells
 - Viruses, bacteria & parasites (pathogens) within cells
 - Defense against “non-self” cells
 - Cancer & transplant cells
- Types of T cells
 - Helper T cells
 - Alerts immune system
 - Killer (cytotoxic) T cells
 - Attack infected body cells

How are cells tagged with antigens
- Major histocompatibility (MHC) proteins
 - Antigen glycoproteins
 - MHC proteins constantly carry bits of cellular material from the cytosol to the cell surface
 - “Snapshot” of what is going on inside cell
 - Give the surface of cells a unique label or “fingerprint”
 - “Antigen presentation”

How do T cells know a cell is infected
- Infected cells digest pathogens & MHC proteins bind & carry pieces to cell surface
 - Antigen presenting cells (APC)
 - Alerts helper T cells

T cell response
- Infected cell
- Helper T cell
 - Interleukin 1
 - Activates macrophage
- Helper T cell
 - Interleukin 2
 - Activates killer T cells
- Killer T cell
 - Interleukin 2
 - Activates B cells & antibodies
 - Stimulates B cells
Attack of the Killer T cells

- Destroys infected body cells
 - binds to target cell
 - secretes **perforin** protein or other chemicals
 - punctures cell membrane of infected cell

Blood type

<table>
<thead>
<tr>
<th>Blood type</th>
<th>Antigen on RBC</th>
<th>Antibodies in blood</th>
<th>Donation status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matching compatible blood groups is critical for blood transfusions. A person produces antibodies against foreign blood antigens.

Blood donation

<table>
<thead>
<tr>
<th>Blood group</th>
<th>Genotype</th>
<th>Antigen present in blood serum</th>
<th>Results from adding red blood cells from groups below to serum from groups at left</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>p^a p^a or p^A p^A</td>
<td>Anti-B</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>p^b p^b or p^B p^B</td>
<td>Anti-A</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>p^a p^b or p^A p^B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td>Anti-A Anti-B</td>
<td></td>
</tr>
</tbody>
</table>