Immune / Lymphatic System

Avenues of attack

- Points of entry
 - digestive system
 - respiratory system
 - urogenital tract
 - break in skin
- Routes of attack
 - circulatory system
 - lymph system

Why an immune system?

- Attack from outside
 - lots of organisms want you for lunch!
 - animals are a tasty nutrient- & vitamin-packed meal
 - cells are packages of macromolecules
 - no cell wall
 - traded mobility for susceptibility
 - animals must defend themselves against invaders
 - viruses
 - HIV, flu, cold, measles, chicken pox, SARS
 - bacteria
 - pneumonia, meningitis, tuberculosis
 - fungi
 - yeast ("Athlete’s foot")...
 - protists
 - amoeba, Lyme disease, malaria
- Attack from inside
 - defend against abnormal body cells = cancers

Lymph system

Production & transport of leukocytes
- Traps foreign invaders

Lines of defense

- 1st line: Barriers
 - broad, external defense
 - "walls & moats"
 - skin & mucus membranes
- 2nd line: Non-specific patrol
 - broad, internal defense
 - "patrolling soldiers"
 - leukocytes = phagocytic WBC
 - macrophages
- 3rd line: Immune system
 - specific, acquired immunity
 - "elite trained units"
 - lymphocytes & antibodies
 - B cells & T cells

Development of Red & White blood cells

- Lymphoid stem cells
- Myeloid stem cells
- Erythrocytes
- Leukocytes
- Platelets
- Macrophages
- Monocytes
- Neutrophils
- Eosinophils
- Basophils
- Lymphocytes

Red blood cells

Pluripotent stem cells

Inflammatory response

Bacteria & insects inherit resistance. Vertebrates acquire immunity!
1st line: External defense
- Physical & chemical defenses
 - non-specific defense
- external barrier
 - epithelial cells & mucus membranes
 - skin
 - respiratory system
 - digestive system
 - uro-genital tract
 - lining of trachea: ciliated cells & mucus secreting cells

1st line: Chemical barriers on epithelium
- Skin & mucous membrane secretions
 - sweat
 - pH 3.5
 - tears
 - washing action
 - mucus
 - traps microbes
 - saliva
 - anti-bacterial = “lick your wounds”
 - stomach acid
 - pH 2
 - anti-microbial proteins
 - lysozyme enzyme
 - digests bacterial cell walls

2nd line: Internal, broad range patrol
- Innate, general defense
 - rapid response
- Patrolling cells & proteins
 - attack invaders that penetrate body’s outer barriers
 - leukocytes
 - phagocytic white blood cells
 - complement system
 - anti-microbial proteins
 - inflammatory response

Leukocytes: Phagocytic WBCs
- Attracted by chemical signals released by damaged cells
 - enter infected tissue, engulf & ingest microbes
 - Lysosomes: digest pathogens once engulfed
- Neutrophils
 - most abundant WBC (~70%)
 - ~ 3 day lifespan
- Macrophages
 - “big eater”, long-lived
- Natural Killer Cells
 - destroy virus-infected cells & cancer cells

Phagocytes
- Yeast
- Macrophage

Destroying cells gone bad!
- Natural Killer Cells perforate cells
 - release perforin protein
 - insert into membrane of target cell
 - forms pore allowing fluid to flow into cell
 - cell ruptures (lysis)
 - apoptosis
- Natural killer cell
 - perforin
 - vesicle
 - virus-infected cell
 - cell membrane
 - perforin punctures cell membrane
 - Cell Lysis
Anti-microbial proteins

- **Complement system**
 - ~20 proteins circulating in blood plasma
 - attack bacterial & fungal cells
 - form a **membrane attack complex**
 - perforate target cell
 - **apoptosis**
 - cell lyse
 - complement proteins form cellular lesion
 - plasma membrane of invading microbe
 - extracellular fluid
 - bacterial cell

Inflammatory response

- **Damage to tissue triggers local non-specific inflammatory response**
 - release **histamines** & **prostaglandins**
 - capillaries dilate, more permeable (leaky)
 - increase blood supply
 - delivers WBCs, RBCs, platelets, clotting factors
 - fight pathogens
 - clot formation
 - accounts for swelling, redness & heat of inflammation & infection

Inflammatory response

- **Reaction to tissue damage**
 - Pin or splinter
 - Bacteria
 - Chemical alarm signals
 - Blood vessel
 - Blood clot
 - Swelling
 - Phagocytes

Fever

- **When a local response is not enough**
 - systemic response to infection
 - activated macrophages release **interleukin-1**
 - triggers hypothalamus in brain to readjust body thermostat to raise body temperature
 - higher temperature helps defense
 - inhibits bacterial growth
 - stimulates phagocytosis
 - speeds up repair of tissues
 - causes liver & spleen to store iron, reducing blood iron levels
 - bacteria need large amounts of iron to grow

3rd line: Acquired (active) Immunity

- **Specific defense**
 - **lymphocytes**
 - B lymphocytes (**B cells**)
 - T lymphocytes (**T cells**)
 - **antibodies**
 - immunoglobulins

- **Responds to...**
 - **antigens**
 - specific pathogens
 - specific toxins
 - abnormal body cells (cancer)

How are invaders recognized: antigens

- **Antigens**
 - proteins that serve as cellular name tags
 - **foreign antigens** cause response from WBCs
 - viruses, bacteria, protozoa, parasitic worms, fungi, toxins
 - non-pathogens: pollen & transplanted tissue
 - **B cells & T cells respond to different antigens**
 - B cells recognize **intact antigens**
 - pathogens in blood & lymph
 - T cells recognize **antigen fragments**
 - pathogens which have already infected cells

“**self**” “**foreign**”
Lymphocytes

- **B cells**
 - mature in bone marrow
 - **humoral** response system
 - "humors" = body fluids
 - produce antibodies

- **T cells**
 - mature in thymus
 - **cellular** response system

Learn to distinguish "self" from "non-self" antigens during maturation
- If they react to "self" antigens, they are destroyed during maturation

B cells

- **Humoral response** = "in fluid"
 - defense against attackers circulating freely in blood & lymph
- **Specific response**
 - produce specific antibodies against specific **antigen**

- **Types of B cells**
 - **plasma cells**
 - immediate production of antibodies
 - rapid response, short term release
 - **memory cells**
 - long term immunity

Antibodies

- Proteins that bind to a specific antigen
 - multi-chain proteins produced by B cells
 - binding region matches molecular shape of antigen
 - each antibody is unique & specific
 - millions of antibodies respond to millions of foreign antigens
 - tagging "handcuffs"
 - "this is foreign…gotcha!"

- Each B cell has ~100,000 antigen receptors

How antibodies work

- **Immunoglobulins**
 - **IgM**
 - 1st immune response
 - activate complement proteins
 - **IgG**
 - 2nd response, major antibody circulating in plasma
 - promote phagocytosis by macrophages
 - Most common, can pass placental barrier
 - **IgA**
 - in external secretions, sweat & mother’s milk
 - **IgE**
 - promotes release of histamine & lots of bodily fluids
 - evolved as reaction to parasites
 - triggers allergic reaction
 - **IgD**
 - receptors of B cells?? Function unclear—found in blood

Structure of antibodies

- antigen-binding site
 - variable region
 - light chain
 - heavy chain

Classes of antibodies

- **Immunoglobulins**
 - **IgM**
 - activates complement proteins
 - **IgG**
 - promote phagocytosis by macrophages
 - **IgA**
 - in external secretions, sweat & mother's milk
 - **IgE**
 - promotes release of histamine & lots of bodily fluids
 - **IgD**
 - receptors of B cells?? Function unclear—found in blood
B cell immune response tested by B cells (in blood & lymph) 10 to 17 days for full response

Invader (foreign antigen) B cells + antibodies Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y recycled Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y clone Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Memory cells reserves

Plasma cells release antibodies A

How do vertebrates produce millions of antibody proteins, if they only have a few hundred genes coding for those proteins?

By DNA rearrangement & somatic mutation vertebrates can produce millions of B & T cells

Immune system exposed to harmless or weakened version of pathogen

- triggers active immunity
- stimulates immune system to produce antibodies to invader
- rapid response if future exposure

Most successful against viral diseases

Vaccinations

Jonas Salk
1914 – 1995
 April 12, 1955

- Developed first vaccine
 - against polio
 - attacks motor neurons

Albert Sabin
1962
oral vaccine

Polio epidemics

1944:
America is polio free
Passive immunity
- Obtaining antibodies from another individual
- Maternal immunity
 - antibodies pass from mother to baby across placenta or in mother’s milk
 - critical role of breastfeeding in infant health
 - mother is creating antibodies against pathogens baby is being exposed to
- Injection
 - injection of antibodies
 - short-term immunity

What if the attacker gets past the B cells in the blood & actually infects some of your cells?
You need trained assassins to kill off these infected cells!

T cells
- Cell-mediated response
 - immune response to infected cells
 - viruses, bacteria & parasites (pathogens) within cells
 - defense against “non-self” cells
 - cancer & transplant cells
- Types of T cells
 - helper T cells
 - alerts immune system
 - killer (cytotoxic) T cells
 - attack infected body cells

How are cells tagged with antigens
- Major histocompatibility (MHC) proteins
 - antigen glycoproteins
 - MHC proteins constantly carry bits of cellular material from the cytosol to the cell surface
 - “snapshot” of what is going on inside cell
 - give the surface of cells a unique label or “fingerprint”

How do T cells know a cell is infected
- Infected cells digest pathogens & MHC proteins bind & carry pieces to cell surface
 - antigen presenting cells (APC)
 - alerts Helper T cells

T cell response
- infected cell
 - activated macrophage
 - helper T cell
 - interleukin 1
 - interleukin 2
 - B cells & antibodies
 - stimulate killer T cells

- infected cell
 - MHC proteins displaying foreign antigens
 - T cell antigen receptors
 - T cell
 - helper T cell
 - interleukin 1
 - interleukin 2
 - activate killer T cells
Attack of the Killer T cells
- Destroys infected body cells
 - binds to target cell
 - secretes **perforin** protein
 - punctures cell membrane of infected cell

Blood type

<table>
<thead>
<tr>
<th>Blood type</th>
<th>Antigen on RBC</th>
<th>Antibodies in blood</th>
<th>Donation status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Anti-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Anti-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>Anti-A, Anti-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Anti-A, Anti-B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matching compatible blood groups is critical for blood transfusions. A person produces antibodies against foreign blood antigens.

Blood donation

<table>
<thead>
<tr>
<th>(a) Phenotype (blood group)</th>
<th>(b) Genotypes</th>
<th>(c) Antibodies present in blood serum</th>
<th>(d) Results from adding red blood cells from groups below to serum from groups at left</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(a^+) or (\bar{a}^+)</td>
<td>Anti-B</td>
<td>A B AB O</td>
</tr>
<tr>
<td>B</td>
<td>(b^+) or (\bar{b}^+)</td>
<td>Anti-A</td>
<td>A B AB O</td>
</tr>
<tr>
<td>AB</td>
<td>(a^+) or (\bar{a}^+)</td>
<td>Anti-A, Anti-B</td>
<td>A B AB O</td>
</tr>
<tr>
<td>O</td>
<td>(\bar{a}^+)</td>
<td>Anti-A, Anti-B</td>
<td>A B AB O</td>
</tr>
</tbody>
</table>

HIV & AIDS

- **Human Immunodeficiency Virus**
 - virus infects **helper T cells**
 - helper T cells don’t activate rest of immune system: T cells & B cells
 - also destroy T cells
- **Acquired ImmunoDeficiency Syndrome**
 - infections by opportunistic diseases
 - death usually from other infections
 - pneumonia, cancer

Immune system malfunctions

- **Auto-immune diseases**
 - immune system attacks own molecules & cells
 - lupus
 - antibodies against many molecules released by normal breakdown of cells
 - rheumatoid arthritis
 - antibodies causing damage to cartilage & bone
 - diabetes
 - beta-islet cells of pancreas attacked & destroyed
 - multiple sclerosis
 - T cells attack myelin sheath of brain & spinal cord nerves
- **Allergies**
 - over-reaction to environmental antigens
 - allergens = proteins on pollen, dust mites, in animal saliva
 - stimulates release of histamine
Key attributes of immune system

- 4 attributes that characterize the immune system as a whole
 - **specificity**
 - antigen-antibody specificity
 - **diversity**
 - react to millions of antigens
 - **memory**
 - rapid 2° response
 - **ability to distinguish self vs. non-self**
 - maturation & training process to reduce auto-immune disease