Mendel’s laws:
- Segregation
- Independent assortment

Reflect same laws of probability that apply to tossing coins or rolling dice.

Calculating probability of making a specific gamete is just like calculating the probability in flipping a coin.
- Probability of tossing heads? 50%
- Probability of making a P gamete...

Outcome of 1 toss has no impact on the outcome of the next toss.
- Probability of tossing heads each time? 50%
- Probability of making a P gamete each time? 50%

Calculating probability

<table>
<thead>
<tr>
<th>Male / Sperm</th>
<th>Female / Eggs</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp</td>
<td>Pp</td>
<td>Pp</td>
</tr>
<tr>
<td>P</td>
<td>Pp</td>
<td>Pp</td>
</tr>
<tr>
<td>P</td>
<td>P</td>
<td>pp</td>
</tr>
</tbody>
</table>

Rule of multiplication
- Chance that 2 or more independent events will occur together
 1. Probability that 2 coins tossed at the same time will land heads up
 - $1/2 \times 1/2 = 1/4$
 2. Probability of Pp x Pp → pp
 - $1/2 \times 1/2 = 1/4$
Calculating dihybrid probability

- Rule of multiplication also applies to dihybrid crosses
 - Heterozygous parents — YyRr
 - Probability of producing yyRr?
 - Probability of producing Yy gamete = 1/2
 - Probability of producing yR gamete = 1/2
 - Probability of producing a yyRr offspring = 1/4 x 1/4 = 1/16

Rule of addition

- Chance that an event can occur 2 or more different ways
 - Sum of the separate probabilities
 - Probability of Pp x Pp → Pp
 - Sperm | Egg | Offspring
 - Pp x Pp
 - 1/2 x 1/2 = 1/4
 - Pp + Pp
 - 1/2 x 1/2 = 1/4

Chi-square test

- Test to see if your data supports your hypothesis
 - Compare “observed” vs. “expected” data
 - Is variance from expected due to “random chance”?
- Other important aspects:
 - Null Hypothesis: that there is no significant difference in proportions between groups

Chi-square test

- Equation:
 \[\chi^2 = \sum \frac{(O_{\text{observed}} - E_{\text{expected}})^2}{E_{\text{expected}}} \]

Chi-square test

- Determine degrees of freedom (df):
 - df = Total possible outcomes – 1
 - (row numbers)(column numbers) - 1
- Compare answer to a chi-squared significance chart:
 - P value = chance alone caused this result, i.e., if P = 0.05, less than a 5% chance this was random