How Light Microscopes Work

- Obj. lens gathers light from the specimen and magnifies the image
 - Most scopes have several obj. lenses for different levels of magnification
- Ocular lens magnifies and transmits the image to your eye
 - This mag. is 10X
- To find the total magnification of the scope, multiply the mag. of the obj. lens by the mag. of the ocular lens.
 - For example: 40X (objective lens) x 10X (ocular lens) = 400X magnification

Images Produced by Light Microscopes

- Amoeba
- Streptococcus bacteria
- Anthrax bacteria
- Human cheek cells
- Plant cells
- Yeast cells

The Parts of a Light Microscope

- Light source: Could be a mirror, but most likely it is a bulb built into the base
- Diaphragm: Adjusts the amount of light striking an object
- Objective lens: Gathers light and magnifies image
- Ocular lens (eyepiece): Magnifies objects and focuses light to your eye
- Stage: Holds slide
 - Can be moved using the coarse or fine adjustment knobs to bring the object into focus
- Stage clips: Hold slide in place
- Base and arm: Structural support for the microscope

You need to be able to use scopes to create plan diagrams...

- Instructions are in your lab manual for today
- No sketching
- No shading
- No cells
- Outline tissues only
Microscope Tips:

- ALWAYS start on scanning obj. lens (red lens)
- Use coarse focus on scanning power only
- Fine focus will fine tune what you are examining at all levels of magnification
- If you can't see anything, go back to scanning and coarse focus up and down until you see the tissue or the slide.

Beyond Light Microscopes

- Resolution: image crispness
- Magnification: zoom size
- Light microscopes are limited by their resolution.
 - Cannot produce clear images of objects smaller than 0.2μm
- Electron microscopes use beams of electrons, rather than light, to produce images
 - Electron microscopes can view objects as small as the diameter of an atom

Types of Electron Microscopes

- Transmission electron microscopes (TEMs) pass a beam of electrons through a thin specimen
- Scanning electron microscopes (SEMs) scan a beam of electrons over the surface of a specimen
- Specimens for electron microscopy must be preserved and dehydrated, so living cells cannot be viewed

Images Produced by Electron Microscopes

- Cyanobacteria (TEM)
- Lactobacillus (SEM)
- Campylobacter (SEM)
- Deinococcus (SEM)
- House ant
- Avian influenza virus
- Human eyelash
- Yeast

Cell Theory

- Cell = basic functional unit of life
- All cells come from other cells through division
Types of cells

- **Prokaryote bacteria cells**
 - no organelles

- **Eukaryote animal cells**
 - organelles

- **Eukaryote plant cells**

Prokaryote vs. Eukaryote

- **Prokaryote**
 - Cell diameter: 0.5-5μm
 - Circular, free-floating DNA
 - DNA naked
 - Ribosomes: 18nm diameter
 - No membrane bound organelles, no ER
 - Cell walls
 - Bacteria

- **Eukaryote**
 - Cell Diameter: 40μm, 1,000-10,000x size of prok’s
 - DNA in double-membrane bound nucleus
 - DNA bound to protein
 - Ribosomes: 22nm diameter
 - Many organelles with specialized features
 - Some with cell walls
 - Plants, animals, fungi, protists

Why organelles?

- Specialized structures
 - specialized functions
 - cilia or flagella for locomotion
- Containers
 - partition cell into compartments
 - create different local environments
 - separate pH, or concentration of materials
 - distinct & incompatible functions
 - lysosome & its digestive enzymes
- Membranes as sites for chemical reactions
 - Surface area!!
 - unique combinations of lipids & proteins
 - embedded enzymes & reaction centers
 - chloroplasts & mitochondria

Cells gotta work to live!

- **What jobs do cells have to do?**
 - **make proteins**
 - proteins control **every** cell function
 - **make energy**
 - for daily life
 - for growth
 - **make more cells**
 - growth
 - repair
 - renewal

Nucleus

- **Function**
 - protects **DNA**

- **Structure**
 - **nuclear envelope**
 - double membrane
 - membrane fused in spots to create **pores**
 - allows large macromolecules to pass through
 - **histone protein**
 - **chromosome**

Cytoplasm
Nucleolus
- **Function**
 - ribosome production
 - build ribosome subunits from rRNA & proteins
 - exit through nuclear pores to cytoplasm & combine to form functional ribosomes
- ![Diagram of Nucleolus](image)

Ribosomes
- **Function**
 - protein production
- **Structure**
 - rRNA & protein
 - 2 subunits combine
- ![Diagram of Ribosomes](image)

Types of Ribosomes
- **Free** ribosomes
 - suspended in cytosol
 - synthesize proteins that function in cytosol
- **Bound** ribosomes
 - attached to endoplasmic reticulum
 - synthesize proteins for export or for membranes
- ![Diagram of Ribosomes](image)

Endoplasmic Reticulum
- **Function**
 - processes proteins
 - manufactures membranes
 - synthesis & hydrolysis of many compounds
- **Structure**
 - membrane connected to nuclear envelope & extends throughout cell
- ![Diagram of ER](image)

Types of ER
- **Rough** ER
 - synthesis of membrane proteins
- **Smooth** ER
 - synthesis of membrane lipids
- ![Diagram of ER](image)

Smooth ER function
- **Membrane production**
- **Many metabolic processes**
 - synthesis
 - synthesize lipids
 - oils, phospholipids, steroids & sex hormones
 - hydrolysis
 - hydrolyze glycogen into glucose
 - detoxify drugs & poisons
Rough ER function
- Produce proteins for export out of cell
 - protein secreting cells
 - packaged into transport vesicles for export

Golgi Apparatus
- Function
 - finishes, sorts, tags & ships cell products
 - like “UPS shipping department”
 - ships products in vesicles
 - membrane sacs
 - “UPS trucks”

Vesicle transport
- protein budding from rough ER
- vesicle forming
- migrating transport vesicle
- fusion of vesicle with Golgi apparatus

Putting it together...

Making proteins
- Nucleus
- Ribosome
- Protein secreted
- ER
- Vesicle
- Protein and protein fragments sent to Golgi apparatus

Centrioles
- Function
 - Guide spindle fibers in nuclear division
 - Only in animal cells
- Structure
 - Hollow cylinder made of protein microtubules
Lysosomes
- **Function**
 - little “stomach” of the cell
 - digests macromolecules
 - “clean up crew” of the cell
 - cleans up broken down organelles
- **Structure**
 - vesicles of digestive enzymes
 - synthesized by rER, transferred to Golgi
 - only in animal cells

![A lysosome in action](image)

Mitochondria
- **Function**
 - cellular respiration
- **Structure**
 - 2 membranes
 - smooth outer membrane
 - highly folded inner membrane
 - cristae
 - fluid-filled space between 2 membranes
 - internal fluid-filled space
 - mitochondrial matrix
 - DNA, ribosomes & enzymes

- Why 2 membranes?
 - increase surface area for membrane-bound enzymes that synthesize ATP

Chloroplasts
- **Chloroplasts are plant organelles**
 - class of plant structures = plastids
 - chloroplasts
 - store chlorophyll & function in photosynthesis
- **Structure**
 - 2 membranes
 - stroma = internal fluid-filled space
 - DNA, ribosomes & enzymes
 - thylakoids = membranous sacs where ATP is made
 - grana = stacks of thylakoids

- Why internal sac membranes?
 - increase surface area for membrane-bound enzymes that synthesize ATP

Animal Cell
- **Plant Cell**

Questions?