Carbohydrates

AICE Biology
Jones & Fosbery Chapter 2

Carbohydrates

- Carbohydrates are composed of C, H, O
 \[\text{carbo - hyd - ate} \]
 \[\text{CH}_2\text{O} \rightarrow \text{C}_n\text{H}_m\text{O}_q \]

- Function:
 - fast energy
 - energy storage
 - raw materials
 - structural materials

- Monomer: sugars
- ex: sugars, starches, cellulose

Simple & complex sugars

- Monosaccharides
 - simple 1 monomer sugars
 - glucose
- Disaccharides
 - 2 monomers
 - sucrose
- Polysaccharides
 - large polymers
 - starch

Sugars

- Most names for sugars end in -ose
- Classified by number of carbons
 - 6C = hexose (glucose)
 - 5C = pentose (ribose)
 - 3C = triose (glyceraldehyde)

- Monosaccharides
 - Single Sugars
 - Dissolve easily in water
 - Sweet taste
 - 3 forms: Sugars all end in “ose”
 - Triose (3C) \(\text{C}_3\text{H}_6\text{O}_3 \)
 - (Glyceraldehyde)
 - Pentose (5 C) \(\text{C}_5\text{H}_{10}\text{O}_5 \)
 - (Ribose, Deoxyribose = components of nucleic acids)
 - Hexose (6 C) \(\text{C}_6\text{H}_{12}\text{O}_6 \)
 - (Glucose, Fructose, Galactose)
Chemical Formulae
- Molecular Formula (empirical formula) ie. \(\text{C}_6\text{H}_{12}\text{O}_6 \)
- Structural Formula
 - Diagram showing the arrangement of atoms.
 - Glucose, fructose & galactose all have the same empirical formula, but have different structural formulae.

Functional groups determine function
- carbonyl
- aldehyde
- ketone

Structural Forms
- Chain Form: Carbon backbone with oxygen & hydrogen forming side bonds.
- Ring Form: In aqueous solution, the molecule closes upon itself to form a more stable ring form.

Sugar structure
5C & 6C sugars form rings in solution

Numbered carbons
energy stored in C-C bonds harvested in cellular respiration
Isomers of Sugars

- **Structural Isomers**: different arrangement of bonds.
 - eg glucose & fructose (See O=C Bonds)
 - Your taste buds can tell the difference fructose much sweeter
 - Form different polymers (repeating subunits)

- **Stereoisomers**: Same bond structure but different orientations of molecule groups.
 - eg. Glucose & galactose: Hydroxyl groups are mirror images of one another
 - α glucose (OH below the plane)
 - β glucose (OH above the plane)

Roles of Monosaccharides

- **Source of energy in respiration**.
 - C-H bonds release lots of energy when broken—used to convert ADP to ATP.
 - Glucose is the most important, metabolically.

- **Building blocks of larger molecules**.
 - glucose → starch, glycogen, cellulose
 - ribose → RNA (ribonucleic acid) & ATP
 - deoxyribose → DNA (deoxyribonucleic acid)

Building sugars

- **Dehydration synthesis**

Dehydration synthesis

- 2 hydroxyl (-OH) groups line up with one another
- One combines with a hydrogen from the other to form a water molecule: HENCE, DEHYDRATION/CONDENSATION
 - Forms an oxygen bridge “glycosidic bond”
 - Any two hydroxyl groups can line up & bond
 - Large variety of possible disaccharides
Building sugars

- Dehydration synthesis

Disaccharides

- Two monosaccharides joined by a covalent bond

Breaking Bonds: Hydrolysis

- Hydrolysis: When polysaccharides break apart to form smaller molecules.
 - Hydro = water
 - Lysis = breaking apart
- Breaking a molecule apart by adding water
- Both Condensation & hydrolysis are controlled by enzymes.
Transport Disaccharides

- In humans, glucose can circulate in the blood
- In plants & many other organisms, glucose must be converted for transport to keep glucose from being “used up” while in transport
 - The bond breaking enzymes are only located in tissue where glucose is meant to be used.
 - \(\text{Glucose + fructose} \rightarrow \text{sucrose} \)
 - \(\text{Glucose + galactose} \rightarrow \text{lactose} \)
 - \(\text{Glucose + glucose} \rightarrow \text{maltose} \)

Polysaccharides

- *Polymers of sugars* (NOT sugars)
 - costs little energy to build
 - easily reversible = release energy
- **Function:**
 - *energy storage*
 - starch (plants)
 - glycogen (animals)
 - in liver & muscles
 - *structure*
 - cellulose (plants)
 - chitin (arthropods & fungi)

Storage Polysaccharides

- Transport disaccharides may be linked together as polysaccharides for storage within cells.
- Plant polysaccharides = starches.
- Animal polysaccharides = glycogen
Linear vs. branched polysaccharides

Starches: Amylose
- Amylose = simplest starch, hundreds / thousands of linked, unbranched alpha glucose molecules.
 - #1 carbon links to #4 of next molecule = long chains of maltose.
 - Long chains coil up in water making it insoluble in water
 - Potato starch ~ 20% amylose

Starch: Amylopectin
- Most plant starch is amylopectin.
 - Also made of many 1,4 linked glucose, but also have 1,6 branching linkages Only 20-30 glucose subunits.
 - Mixtures of amylose & amylopectin build up as starch grains in chloroplasts & storage vacuoles.

Glycogen
- "Animal version of starch."
- Insoluble polysaccharide of branched amylose chains
 - Average chain much longer and greater # of branches than plant starch.
 - Animal form of energy storage.
Structural Carbohydrates: Cellulose

- Most abundant organic compound on Earth
 - herbivores have evolved a mechanism to digest cellulose
 - most carnivores have not
- that’s why they eat meat to get their energy & nutrients
- cellulose = undigestible roughage

Cellulose

- Unbranched chains of beta glucose
- Several chains are cross-linked by H-bonding to form fibrils
- Several fibrils crosslink to form fibres
- Forms cell walls of plants