Carbohydrates

AICE BIOLOGY JONES & FOSBERY CHAPTER 2

Sugars

Monosaccharides

- Single Sugars
- Dissolve easily in water
- Sweet taste
- 3 forms: Sugars all end in "ose"
 <u>Triose</u> (3C) C₃H₆O₃
 - (Gylceraldehyde)
 - Pentose (5 C) C₅H₁₀O₅
 - (Ribose, Deoxyribose = components of nucleic acids) • <u>Hexose</u> (6 C) C₆H₁₂O₆
 - (Glucose, Fructose, Galactose)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A. Molecular Formula

(empirical formula) ie. C₆H₁₂O₆

B. Structural Formula

Diagram showing the arrangement of atoms. •Glucose, fructose & galactose all have the same empirical formula, but have different structural formulae.

- Structural Forms
- Chain Form: Carbon backbone with oxygen & hydrogen forming side bonds.
- Ring Form: In aqueous solution, the molecule closes upon itself to form a more stable ring form.

Numbered carbons

Isomers

Molecules with the same empirical formula but different structural formulae (arrangement of atoms determines functional differences)

There are 2 types of isomers

Structural Isomers: different arrangement of bonds.

- eg glucose & fructose (See O=C Bonds)
- ullet Your taste buds can tell the difference otar fructose much sweeter
- Form different polymers (repeating subunits)

Stereoisomers: Same bond structure but different orientations of molecule groups.

- eg. Glucose & galactose: Hydroxyl groups are mirror images of one another
- ●d glucose (OH above the plane)
- •ß glucose (OH below the plane)

Source of energy in respiration.

• C-H bonds release lots of energy when broken \rightarrow used to convert ADP to ATP

Glucose is the most important, metabolically.

Building blocks of larger molecules.

- glucose \rightarrow starch, glycogen, cellulose
- ribose \rightarrow RNA (ribonucleic acid) & ATP
- deoxyribose → DNA (deoxyribonucleic acid)

•Two monosaccharides joined by a covalent bond

Bond formation: Condensation

Condensation: The name for the bonding process by which two monosaccharides form a disaccharide. AKA dehydration synthesis.

- 2 hydroxyl (-OH) groups line up with one another
- One combines with a hydrogen from the other to form a water molecule: HENCE, CONDENSATION
- Forms an oxygen bridge "glycosidic bond"
- Any two hydroxyl groups can line up & bond
- Large variety of possible disaccharides
- Large variety of possible disaccitations

Glucose + Fructose

MONOSACCHARIDES

Breaking Bonds: Hydrolysis

• Hydrolysis: When polysaccharides break apart to form smaller molecules.

- Hydro = water
- Lysis = breaking apart
- Breaking a molecule apart by adding water
- Both Condensation & hydrolysis are controlled by enzymes.

Transport Disaccharides

oIn humans, glucose can circulate in the blood

 In plants & many other organisms, glucose must be converted for transport to keep glucose from being "used up" while in transport

•The bond breaking enzymes are only located in tissue where glucose is meant to be used.

oGlucose + fructose = sucrose

- oGlucose + galactose = lactose
- oGlucose + glucose = maltose

Polysaccharides

•Formed by joining long chains of monosaccharides through condensation.

- Each successive monosaccharide is joined by a glycosidic bond.
- Polysaccharides are not sugars.
- Most important: Starch, cellulose & glycogen

Storage Polysaccharides

 Transport disaccharides may be linked together as polysaccharides for storage within cells.

Plant polysaccharides = starches.

Animal polysaccharides = glycogen

Starches: Amylose

 Amylose = simplest starch, hundreds / thousands of linked, unbranched alpha glucose molecules.

- •#1 carbon links to #4 of next molecule = long chains of maltose.
- Long chains coil up in water making it insoluable in water
- Potato starch ~ 20% amylose

Starch: Amylopectin

oMost plant starch is amylopectin.

oAlso made of many 1,4 linked glucose, but also have 1,6 branching linkages (2.6 JF)

oOnly 20-30 glucose subunits.

 Mixtures of amylose & amylopectin build up as starch grains in chloroplasts & stroage vaculoes.

Amylopectin

Glycogen

"Animal version of starch."
Insoluable polysaccharide of branched amylose chains

oAverage chain much longer and

greater # of branches than plant starch.

oAnimal form of energy storage.

Giycogen

Structural Carbohydrates: Cellulose

oUnbranched chains of beta glucose

oSeveral chains are crosslinked by H-bonding to form fibrils

oSeveral fibrils crosslink to form fibres

oForms cell walls of plants

